A Hybrid Swarm Intelligence Algorithm for Clustering-Based Routing in Wireless Sensor Networks

Author:

Barzin Amirhossein1,Sadegheih Ahmad1ORCID,Zare Hassan Khademi1,Honarvar Mahbooeh1

Affiliation:

1. Faculty of Industrial Engineering, Yazd University, University Blvd., Safayieh, PO Box: 89195-741, Yazd, Iran

Abstract

Wireless sensor networks (WSNs) comprise a large number of tiny sensing nodes, which are battery-powered with limited energy. An energy-efficient routing protocol is of utmost importance to prolong the network lifetime. Clustering is the most common technique to balance energy consumption among all nodes, while minimizing traffic and overhead during the data transmission phases. In this paper, a Multi-Objective nature-inspired algorithm based on Shuffled frog-leaping algorithm and Firefly Algorithm (named MOSFA) as an adaptive application-specific clustering-based multi-hop routing protocol for WSNs is proposed. MOSFA’s multi-objective function regards different criteria (e.g., inter- and intra-cluster distances, the residual energy of nodes, distances from the sink, overlap, and load of clusters) to select appropriate cluster heads at each round. Moreover, another multi-objective function is proposed to select the forwarder nodes in the routing phase. The controllable parameters of MOSFA in both clustering and multi-hop phases can be adaptively tuned to achieve the best performance based on the network requirements according to the specific application. Simulation results demonstrate average lifetime improvements of 182%, 68%, 30%, and 28% when compared with LEACH, ERA, SIF, and FSFLA, respectively, in different network scenarios.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Salp Swarm and Improved Whale Optimization Algorithm‐based clustering scheme for improving network lifespan in wireless sensor networks;International Journal of Communication Systems;2024-06-19

2. A Survey on Cluster-Based Hybrid Nature-Inspired Routing Algorithm in Wireless Sensor Network;Algorithms for Intelligent Systems;2024

3. Conclusion and future research directions;Recent Trends in Swarm Intelligence Enabled Research for Engineering Applications;2024

4. Efficient Cluster-Head Selection using BWM-TOPSIS Tool;2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA);2023-09-20

5. Trust aware clustering based secure routing techniques in wireless sensor network;Journal of Intelligent & Fuzzy Systems;2023-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3