Power Attack Vulnerability Assessment of Circuit-Level PRESENT Encryption IP Using Artificial Intelligence Mechanisms

Author:

Natarajan Kailash1ORCID,Sricharan R1ORCID,Thriambak M1ORCID,Banu Anjana Jyothi1ORCID,Prathiba A2ORCID,Kanchana Bhaaskaran V S1ORCID

Affiliation:

1. School of Electronics Engineering, VIT University, Kelambakkam, Vandalur Rd, Rajan Nagar, Chennai, Tamil Nadu 600127, India

2. Centre for Nanoelectronics and VLSI Design, VIT University, Kelambakkam, Vandalur Rd, Rajan Nagar, Chennai, Tamil Nadu 600127, India

Abstract

Artificial Intelligence (AI) schemes eliminate the need for intellectual human knowledge of crypto algorithms to facilitate side-channel attacks on security implementations. Side channel attack analysis for circuit-level hardware (VLSI) implementations of symmetric-key block ciphers through artificial machine models are yet to be addressed. The proposed design of block cipher architecture, which is the implementation under attack features, secure adiabatic logic style the Charge Balancing Symmetric Pre-resolve Adiabatic Logic (CBSPAL). This style exhibits uniform power consumption through its inherent circuit arrangement, which makes it robust toward side-channel power attacks. This paper considers several Multilayer Perceptron (MLP) architectures to mount non-profiled side-channel attacks on round 1- PRESENT circuit-level implementation. Supervised learning of the MLP models through training with power waveforms employs binary LSB labeling. An attack on the custom dataset with 50,000 supply power traces collected from the CBSPAL implementation fails to retrieve secret information in any of the 8 bytes. The traditional Correlation Power Attack (CPA) was also not thriving with the proposed implementation. Comparison is made through a similar attack approach on benchmark AES (ASCAD dataset), which distinguishes the secret information throughout all the parameters of interest: normalized accuracy, normalized NMM accuracy and rank plots on byte 3.

Funder

National Supercomputing Mission

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3