Deep Convolutional Neural Network with Optical Flow for Facial Micro-Expression Recognition

Author:

Li Qiuyu1,Yu Jun2,Kurihara Toru2,Zhang Haiyan1,Zhan Shu1ORCID

Affiliation:

1. School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, P. R. China

2. School of Information, Kochi University of Technology, Kami Campus, Tosayamada, Kami City, Kochi 782-8502, Japan

Abstract

Micro-expression is a kind of brief facial movements which could not be controlled by the nervous system. Micro-expression indicates that a person is hiding his true emotion consciously. Micro-expression recognition has various potential applications in public security and clinical medicine. Researches are focused on the automatic micro-expression recognition, because it is hard to recognize the micro-expression by people themselves. This research proposed a novel algorithm for automatic micro-expression recognition which combined a deep multi-task convolutional network for detecting the facial landmarks and a fused deep convolutional network for estimating the optical flow features of the micro-expression. First, the deep multi-task convolutional network is employed to detect facial landmarks with the manifold-related tasks for dividing the facial region. Furthermore, a fused convolutional network is applied for extracting the optical flow features from the facial regions which contain the muscle changes when the micro-expression appears. Because each video clip has many frames, the original optical flow features of the whole video clip will have high number of dimensions and redundant information. This research revises the optical flow features for reducing the redundant dimensions. Finally, a revised optical flow feature is applied for refining the information of the features and a support vector machine classifier is adopted for recognizing the micro-expression. The main contribution of work is combining the deep multi-task learning neural network and the fusion optical flow network for micro-expression recognition and revising the optical flow features for reducing the redundant dimensions. The results of experiments on two spontaneous micro-expression databases prove that our method achieved competitive performance in micro-expression recognition.

Funder

National Nature Science Foundation of China Grand

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of research on micro-expression recognition algorithms based on deep learning;Neural Computing and Applications;2024-08-05

2. MCNet: meta-clustering learning network for micro-expression recognition;Journal of Electronic Imaging;2024-03-08

3. Full-Reference Image Quality Assessment Using Self-Attention and Multiscale Features;Journal of Circuits, Systems and Computers;2023-12-29

4. Expert System for Smart Virtual Facial Emotion Detection Using Convolutional Neural Network;Wireless Personal Communications;2023-12

5. Micro-expression Recognition Based on Apex Frame Using Deep Learning;2023 19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD);2023-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3