Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

Author:

Li Tao1ORCID,He Shuibing2,Chen Ping2,Yang Siling2,Yin Yanlong3,Xu Cheng1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, P. R. China

2. College of Computer Science and Technology, Zhejiang University, Hangzhou, P. R. China

3. Intelligent Computing System Research Center, Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, P. R. China

Abstract

As one of the most popular frameworks for large-scale analytics processing, Hadoop is facing two challenges: both applications and storage devices become heterogeneous. However, existing data placement and job scheduling schemes pay little attention to such heterogeneity of either application I/O requirements or I/O device capability, thus can greatly degrade system efficiencies. In this paper, we propose ASPS, an Application and Storage-aware data Placement and job Scheduling approach for Hadoop clusters. The idea is to place application data and schedule application tasks considering both application I/O requirements and storage device characteristics. Specifically, ASPS first introduces novel metrics to quantify I/O requirements of applications. Then, based on the quantification, ASPS places data of different applications to the preferred storage devices. Finally, ASPS tries to launch jobs with high I/O requirements on the nodes with the same type of faster devices to improve system efficiency. We have implemented ASPS in Hadoop framework. Experimental results show that ASPS can reduce the completion time of a single application by up to 36% and the average completion time of six concurrent applications by 27%, compared to existing data placement policies and job scheduling approaches.

Funder

National Natural Science Foundation of China

Zhejiang Lab Research Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3