A Deep Federated Learning-Based User Credit Evaluation Model Under Financial Internet of Things Scenarios

Author:

Gu Shaoyong1ORCID,Chen Zhuo2

Affiliation:

1. Guangdong Polytechnic of Industry and Commerce, Guangzhou 510540, P. R. China

2. Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China

Abstract

With the rapid development of Internet of Things (IoT) technology and the digital transformation of the financial industry, the financial IoT is becoming an important trend in the future financial field. In the era of financial IoT, a large amount of data information is recorded by sensors and devices, which poses new challenges and opportunities for user credit evaluation. In this context, conventional deep learning-based user credit evaluation methods often cannot meet privacy needs. The paper combines the privacy security ability of federated learning with deep learning, and proposes a deep federated learning-based user credit evaluation model under financial IoT scenarios. First, a particle swarm optimization-based backpropagation neural network algorithm is formulated to extract user credit evaluation features, in order to obtain user behavior patterns and credit features. Then, the XGBoost algorithm is employed to output credit evaluation results. As for the training process, the thought of federated learning is integrated to distribute the model to individual participants. In such mode, the model can be updated and trained without exposing user data to the central cloud. The experiments are conducted on real-world data to assess the proposal’s performance. The results show that the proposed credit evaluation framework can achieve better accuracy, under the guarantee of user privacy.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3