Selection of Optimal Thresholds in Multi-Level Thresholding Using Multi-Objective Emperor Penguin Optimization for Precise Segmentation of Mammogram Images

Author:

Subasree S.1,Sakthivel N. K.2,Balasaraswathi V. R.3,Tyagi Amit Kumar4

Affiliation:

1. Department of Computer Science and Engineering, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

2. Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

3. Department of Networking and Communications, School of Computing, SRM Institute of Science and Technology, Kattankulattur, Tamil Nadu, India

4. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India

Abstract

In medical image examination, image segmentation is the broadly used method. Currently, the efficient segmentation of mammogram images is the main challenge. Many methods were presented for segmenting the mammogram images, but the results are not satisfactory. In this paper, an efficient segmentation of mammogram images-based Multilevel Thresholding (MLT) method is proposed. Initially, the preprocessing step is executed for eliminating the unnecessary noises. For gaining the useful features from the mammogram images, mammogram image segmentation is carried out using multilevel thresholding method. In this paper, a novel Multi-Objective Emperor Penguin Optimization (MOEPO) algorithm is proposed for searching the multilevel greatest thresholds that segment the images into background and objects. The objective functions of the MLT are Otsu’s method, Kapur and Tsallis entropy. The effectiveness of the proposed method is analyzed using several performances evaluating metrics, like PSNR, FSIM and SSIM. The experimental outcomes show that the performance of the proposed technique is superior to other state-of-the-art methods. The proposed technique is likened to three existing models, viz. ScPSO-MT, Double Threshold and IWO-SUSAN. The SSIM of the proposed technique is 24.99%, 27.83% and 26.95% better than ScPSO-MT, Double Threshold and IWO-SUSAN existing approaches. The PSNR of the proposed technique is 25.27%, 40% and 50.74% better than ScPSO-MT, Double Threshold and IWO-SUSAN approaches. The FSIM of the proposed technique is 28.57%, 34.12% and 34.12% better than ScPSO-MT, Double Threshold and IWO-SUSAN methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3