A Self-Improved Optimizer-Based CNN for Wind Turbine Fault Detection

Author:

Ahilan T.1ORCID,Narasimhulu Andriya2,Prasad D. V. S. S. S. V.3

Affiliation:

1. St. Joseph College of Engineering, Near Toll Plaza, Sriperumbudur, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, India

3. Department of Mechanical Engineering, Aditya College of Engineering, Surampalem, Andhra Pradesh, India

Abstract

In comparison to other alternative energy sources, wind power is more affordable and environmentally friendly, making it one of the most significant energy sources in the world. It is vital to monitor the condition of each wind turbine in the farm and recognize the various states of alert since difficulties with the operation as well as maintenance of wind farms considerably contribute to the rise in their overall expenses. The Supervisory Control and Data Acquisition (SCADA) data-based continuous observation of wind turbine conditions is the most widely used existing strategy to detect the fault early by preventing the wind turbine from reaching a shutdown stage. Several parameters irrelevant to the faults are saved in the SCADA system while the wind turbine is operating. To increase the efficacy of wind turbine fault diagnostics, optimally selected SCADA data parameters are required for fault prediction. Hence, this paper introduces an optimized Convolutional Neural Network (CNN)-based wind turbine fault identification method. For more precise detection, a Self-Improved Slime Mould Algorithm (SI-SMA) is used for the optimal selection of SCADA parameters as well as weight optimization of CNN. The proposed SI-SMA method is an enhanced form of the standard Slime Mould Algorithm (SMA). Eventually, an error analysis and a stability analysis are carried out to check the overall effectiveness of the suggested approach. In particular, the root mean square error (RMSE) of the implemented algorithm is lower, and it is 0.69%, 1.58%, 0.81% and 1.71% better than the existing FF, GWO, WOA and SMA models.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault detection of wind turbine blades based on CNN-RFECV-DT;Proceedings of the 3rd International Conference on Computer, Artificial Intelligence and Control Engineering;2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3