A High-Performance Low Complex Design and Implementation of QRS Detector Using Modified MaMeMi Filter Optimized with Mayfly Optimization Algorithm

Author:

Malathi S. R.1ORCID,Vijay Kumar P.1

Affiliation:

1. Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Chennai 602117, Tamilnadu, India

Abstract

Electrocardiogram (ECG) is considered as the important diagnostic tests in medical field for detecting the cardiac anomalies. But, the ECG signals are polluted with numerous noise from power line intrusion, muscle noise, baseline wander, motion artifacts, low frequency noise signals, high frequency noise signals and T-wave, which automatically affects the QRS profile. The existing method provides the result in lesser accuracy with higher rate of error detection. To overcome these issues, QRS detector using modified maximum mean minimum (MoMaMeMi) filter optimized with mayfly optimization algorithm (QRS-MoMaMeMi-MOA) is proposed in this paper for less computational cost along with resource requirements. The proposed filter design consists of two phases for detecting QRS detector, such as filtering process associated to the enhancement and detection phase. Initially, the ECG data are taken from MIT/BIH arrhythmia dataset (MIT-AD). For eradicating the baseline wander in ECG data, MaMeMi filter is used. For expanding the performance of the modified MaMeMi filter, filter parameters, such as [Formula: see text] and [Formula: see text] are optimized by MOA to accomplish the best values and measure the performance of the whole QRS detector. For high frequency noise suppression in ECG data, the range function, noise subtractors, modified triangular detector are used. Then, heart beat detection can be done with the help of adaptive thresholding technique. The proposed filter design is carried out in MATLAB and implemented on field programmable gate arrays (FPGAs). The proposed QRS-MoMaMeMi-MOA filter design had 0.93%, 0.12% and 0.19% higher accuracy and 89.32%, 50% and 62% low detection error rate, compared to the existing filters, like Kalman filtering based adaptive threshold algorithm for QRS complex detection (QRS-KF-ATA), QRS detection of ECG signal utilizing hybrid derivative with MaMeMi filter by efficiently removing the baseline wander (QRS-HD-MaMeMi), and knowledge-based QRS detection operated by cascade of moving average filters (QRS-CAF). Then, the device utilization of the proposed FPGA implementation of the QRS-MoMaMeMi-MOA filter provides 95.556% and 71.428% lower power usage compared with the existing algorithms, like Kalman filtering based adaptive threshold algorithm for QRS complex detection in FPGA (FPGA-QRS-KF-ATA), and efficient architecture for QRS detection in FPGA utilizing integer Haar wavelet transform (FPGA-QRS-IHWT).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Media Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3