Demonstrating the Effect of Using Goppa Coding with Hybrid Selective Mapping and Partial Transmit Sequence Technique for PAPR Reduction in OFDM Systems

Author:

Pundir Vandana1ORCID,Ahmad Anwar1

Affiliation:

1. Department of Electronics and Communication, Jamia Millia Islamia University, Okhla, New Delhi 110025, India

Abstract

Orthogonal Frequency Division Multiplexing is a multi-carrier modulation technique which provides numerous advantages like high spectral efficiency, minimal interference, low multipath fading, etc. But Peak-to-average Power Ratio is a severe challenge in using such multiplexing technique as it introduces distortions in nonlinear devices. Various Peak-to-average Power Ratio reduction techniques have been investigated in the literature to improve the performance of Orthogonal Frequency Division Multiplexing systems. But, each of them suffers either from high complexity or degraded bit error rate or less spectral efficiency. For reducing Peak-to-average Power Ratio more effectively, a hybrid combination of Partial Transmit Sequence with Selective Mapping is detected to show better performance. In this paper, we have combined Goppa coding technique with this hybrid Selective Mapping and Partial Transmit Sequence for further improving the performance. Along with Peak-to-average Power Ratio reduction capability, the proposed technique also has inherent error control mechanism due to the use of coding. Based on the simulation results, we have concluded that the proposed technique provides good amount of Peak-to-average Power Ratio reduction than conventional techniques. The proposed technique is analyzed for different number of Orthogonal Frequency Division Multiplexing symbol candidates for Selective Mapping and different number of block divisions for Partial Transmit Sequence. Further, this technique is simulated for different number of subcarriers and modulation order and the simulation results are compared with each other. The proposed technique also shows better Bit error rate values for high Signal-to-Noise ratio.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3