Accuracy Improvement of Solar Power Estimation Using Real-Time Degradation Computation of PV Panels

Author:

Bhola Parveen1ORCID,Bhardwaj Saurabh23

Affiliation:

1. Electronics & Communication Engineering Department, ITS Engineering College, Greater Noida, Uttar Pardesh 201308, India

2. Electrical & Instrumentation Engineering Department, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India

3. Deep Learning Research Laboratary, Virginia Tech, USA

Abstract

Many applications including power trading and planning require the accurate estimation of solar power in real time. As the power output of the solar panels degrades over the time period, so its real-time estimation is tough without the degradation parameter. In the proposed method, the effect of degradation in terms of performance ratio is incorporated along with other meteorological parameters. The degradation is calculated in real time using the clustering-based technique without physical inspection on site. Initially, the power is estimated using Support Vector Regression (SVR) model with the meteorological parameters. The estimation is further fine-tuned in sync with the degradation rate. The model is validated on the real data (Meteorological parameters and Solar power) procured from the solar plant. After refinement, the estimation results show significant improvement in terms of statistical measures. Now, the estimation accuracy in terms of coefficient of determination R2 is 92% and the error metrics normalized root mean square error (NMRSE), mean absolute percentage error (MAPE), root mean square error (RMSE) are 7.13, 5.92 and 14.54, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3