Deep Learning Wind Power Prediction Model Based on Attention Mechanism-Based Convolutional Neural Network and Gated Recurrent Unit Neural Network

Author:

Hou Zai-Hong1ORCID,Bai Yu-Long1ORCID,Ding Lin1ORCID,Yue Xiao-Xin1ORCID,Huang Yu-Ting1ORCID,Song Wei1ORCID,Bi Qi1ORCID

Affiliation:

1. College of Physics and Electrical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China

Abstract

Accurate prediction of wind power is crucial for the efficient operation and risk management of wind farms. This paper introduces a deep learning model for wind power prediction that integrates an Attention mechanism with a convolutional neural network (CNN) and a gated recurrent unit (GRU) neural network. Addressing the randomness, intermittency, volatility and uncertainty of wind speed, we first apply swarm decomposition (SWD) to preprocess the original wind power data into subsequences. Subsequently, the CNN extracts spatial features, and the GRU identifies temporal correlations. The Attention mechanism enhances feature significance, further optimizing prediction accuracy. Complex error sequences generated by the CNN–GRU–Attention (CGA) model are corrected using the autoregressive integrated moving average (ARIMA). We evaluated the model’s performance using three wind power datasets against 16 other models, employing six evaluation indices (MSE, RMSE, MAPE, Theil’s [Formula: see text], TIC and SPL) and the Diebold–Mariano (DM) test and model confidence set (MCS) for model testing. Our results demonstrate the proposed model’s superior accuracy and efficiency in predicting wind power.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3