A Parallel Partial Enhancement Method for License Plate Localization in Low-Quality Images

Author:

Xiao Sainan12,Yang Wangdong1ORCID,Cao Buwen2,Zhou Honglie2,He Chenjun2

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, P. R. China

2. College of Information and Electronic Engineering, Hunan City University, Yiyang 413000, P. R. China

Abstract

Finding an effective license plate localization (LPL) method is challenging owing to different conditions during the image acquisition phase. Most existing methods do not consider various low-quality image conditions that exist in real-world situations. Low-quality image conditions mean that an image can have low resolution, plate imperfection effects, variable illumination environments or background objects similar to the license plate (LP). To improve the anti-interference ability and the speed performance of algorithm, this study aims to develop a parallel partial enhancement method based on color differences that demonstrates improved localization performance for blue–white LP images under low-quality conditions. A novel color difference model is exploited to enhance LP areas and filter non-LP areas. Blue–white color ratio and projection analysis are performed to select the exact LP area from the candidates. Moreover, this study develops a parallel version based on a multicore CPU for real-time processing for industrial applications. An image database including 395 low-quality car images captured from various scenes under different conditions is tested for the performance evaluation. The extensive experiments show the effectiveness and efficiency of the proposed approach.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3