Automatic Question Answering System Based on Convolutional Neural Network and Its Application to Waste Collection System

Author:

Jiang Chuan1ORCID,Su Qianmin1ORCID,Zhang Lele1,Huang Bo1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China

Abstract

As a typical cyber-physical-social system (CPSS), the waste collection system profoundly changes the current waste processing mode and greatly relieves the dilemma of waste disposal. However, the existing waste collection system does not provide the function that guides people to deliver the waste into the correct trash bin. In order to improve the efficiency of waste collection system, we propose an automatic question answering system based on convolutional neural network (CNN) to help people classify waste correctly. The construction process of automatic question answering system is divided into the following steps. We first construct a question answering dataset about waste classification, in which question answering pairs from the four waste categories (recyclable waste, harmful waste, dry waste, and wet waste) are included. After the dataset is constructed, we perform text preprocessing on the dataset, which includes denoising, Chinese word segmentation, and removing stop words. After text preprocessing, we use the Word2vec model as feature representation. Then, we construct a CNN and utilize the word embeddings as an input to train model. Finally, we deploy the trained model to the waste collection system, which can answer the question of waste classification that people ask. We also present a comparative analysis of the proposed method and traditional machine learning methods. The experiment shows that the proposed method has higher accuracy of waste classification than that of traditional machine learning methods.

Funder

the National Natural Science Foundation for Young of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3