A Novel Current-Controlled Oscillator-Based Low-Supply-Voltage Microbolometer Readout Architecture

Author:

Gülden Mehmet Ali12,Zencir Ertan3,Çavuş Enver1

Affiliation:

1. Department of Electrical and Electronics Engineering, Ankara Yildirim Beyazit University, 06010, Turkey

2. Aselsan Inc. Mehmet Akif Ersoy Mahallesi 296. Cadde No: 16, 06370 Yenimahalle-Ankara, Turkey

3. Department of Electrical and Electronics Engineering, University of Turkish Aeronautical Association, 06790, Turkey

Abstract

In this paper, we present a novel, almost-digital approach for bolometer readout circuits to overcome the area and power dissipation bottlenecks of analog-based classical microbolometer circuits. A current-controlled oscillator (CCO)-based analog-to-digital converter (ADC) is utilized instead of a capacitive transimpedance amplifier (CTIA) in the classical readout circuits. This approach, which has not been reported before, both produces the required gain in the bolometer input circuit and directly digitizes the bolometer signal. With the proposed architecture, the need for large capacitances (of the order of 10–15[Formula: see text]pF for each column) at which the current is accumulated in the bolometer circuits and the voltage headroom limitation of classical microbolometer circuits are eliminated. Therefore, the proposed architecture permits to design readout circuits with reduced pixel pitch and lower power supply, both of which in turn lead to higher-resolution Focal Plane Arrays (FPAs) with lower power dissipation. The new architecture is modeled and simulated using a 180-nm CMOS process for sensitivity, noise performance, and power dissipation. Unlike the 3.3-V power supply usage of classical readout circuits, the proposed design utilizes 1.2-V analog and 0.9-V digital supply voltages with a power dissipation of almost half of the classical approach.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3