A DISCRETE WAVELET TRANSFORM CODEC DESIGN

Author:

HU YI-QIANG1,WU BING-FEI1,SU CHORNG-YANN1

Affiliation:

1. Department of Electrical and Control Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, 30050, ROC

Abstract

This manuscript presents a VLSI architecture and its design rule, called embedded instruction code (EIC), to realize discrete wavelet transform (DWT) codec in a single chip. Since the essential computation of DWT is convolution, we build a set of multiplication instruction, MUL, and the addition instruction, ADD, to complete the work. We segment the computation paths of DWT according to the multiplication and addition, and apply the instruction codes to execute the operators. Besides, we offer a parallel arithmetic logic unit (PALU) organization that is composed of two multipliers and four adders (2M4A) in our design. Thus, the instruction codes programmed by EIC control the PALU to compute efficiently. Additionally, we establish a few necessary registers in PALU, and the number of registers depends on the wavelet filters' length and the decomposition level. Yet, the numbers of multipliers and adders do not increase as we execute the DWT or the inverse DWT (IDWT) in multilevel decomposition. Furthermore, we deduce the similarity between DWT and IDWT, so the functions can be integrated in the same architecture. Besides, we schedule the instructions; thus, the execution of the multilevel processes can be achieved without superfluous PALU in a single chip. Moreover, we solve the boundary problem of DWT by using the symmetric extension. Therefore, the perfect reconstruction (PR) condition for DWT requirement can be accomplished. Through EIC, we can systematically generate a flexible instruction codes while we adopt different filters. Our chip supports up to six levels of decomposition, and versatile image specifications, e.g., VGA, MPEG-1, MPEG-2, and 1024×1024 image sizes. The processing speed is 7.78 Mpixel/s when the operation frequency, for normal case, is 100 MHz.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Reference14 articles.

1. P. P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, New Jersey, 1993) pp. 491–538.

2. VLSI architectures for the discrete wavelet transform

3. Handling borders in systolic architectures for the 1-D discrete wavelet transform for perfect reconstruction

4. The recursive pyramid algorithm for the discrete wavelet transform

5. G. Strang and T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Massachusetts, 1996) pp. 272–275.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3