First-Order Current-Mode Fully Cascadable All-Pass Frequency Selective Structure, Its Higher-Order Extension and Tunable Transformation Possibilities

Author:

Chaturvedi Bhartendu1,Mohan Jitendra1,Jitender 1

Affiliation:

1. Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India, 201304, India

Abstract

An extra-X second-generation current conveyor (EXCCII) based first-order current-mode all-pass frequency selective structure is presented through this paper. A grounded resistor and a grounded capacitor are used as passive components. Single active element based realization directly correlates with the circuit’s simplicity. The grounded nature of passive components is advantageous from IC fabrication aspects. The proposed circuit offers cascadability support through low input impedance and high output impedance. The ability of the presented idea to deliver the desired output without meeting any stringent component matching condition further simplifies the circuit’s operation. Sensitivity performance of the proposed circuit is good. The quality performance at high frequency is another value addition to the circuit’s signal processing attributes. Analyses showing the circuit’s behavior under non-ideal conditions are also described in detail. Validation of theoretical analyses is supported by simulations carried out on PSPICE at 0.25[Formula: see text][Formula: see text]m technology.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Current Mode First-Order Filter and Oscillator;Lecture Notes in Electrical Engineering;2023-10-03

2. CMOS Compatible First-Order Current Mode Universal Filter Structure and its Possible Tunable Variant;Journal of Circuits, Systems and Computers;2022-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3