In-Situ Timing Error Predictor-Based Two-Cycle Adaptive Frequency Scaling System on an FPGA

Author:

Dam Minh Tung12,Nguyen Van Toan12,Lee Jeong-Gun12

Affiliation:

1. E-SoC Lab, Department of Computer Science, Hallym University, Chuncheon-si, Gangwon-do 24252, South Korea

2. Smart Computing Lab, Department of Computer Engineering, Hallym University, Chuncheon-si, Gangwon-do 24252, South Korea

Abstract

In this paper, a timing error predictor (TEP) for adaptive frequency scaling (AFS) is proposed on a field-programmable gate array (FPGA). The use of TEP-based AFS can minimize large timing margin which is added to a clock cycle time for tolerating process, voltage, and temperature (PVT) variations. On an FPGA, in general, the typical dynamic frequency scaling has used the feature of dynamic frequency synthesis (DFS) in a digital clock manager (DCM). However, it has a long locking time. Moreover, during the DCM reconfiguration for generating a new frequency, the lock signal of the DCM can be lost and it leads to possible glitches or spikes at the output. In this work, a variable-length ring oscillator (VLRO), which employs a high-speed carry chain in an FPGA, is proposed to replace the DCM for changing the frequency within one clock cycle without introducing any glitches. Furthermore, an in-situ TEP, which detects timing errors, is combined with VLRO to further reduce the timing margin of a target system. Our proposed in-situ TEP-based AFS scheme is applied to a [Formula: see text]-bit multiplier and implemented on a Spartan-6 FPGA device (XFC6SLX45). The functional correctness of the TEP is verified under various DC supply voltages and operating frequencies. The experimental results show that the proposed TEP-based AFS system switches the clock frequency correctly within two clock cycles and improves circuit performance up to [Formula: see text] the nominal operating condition by minimizing the timing margin.

Funder

National Research Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3