Formal Modeling and Verifying the TTCAN Protocol from a Probabilistic Perspective

Author:

Li Xin1ORCID,Guo Jian12ORCID,Zhao Yongxin3,Zhu Xiaoran1

Affiliation:

1. Soft/Hardware Co-Design Engineering Research Center, East China Normal University, Shanghai 200062, P. R. China

2. National Trusted Embedded Software, Engineering Technology Research Center, East China Normal University, Shanghai 200062, P. R. China

3. Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, P. R. China

Abstract

The time-triggered CAN (TTCAN) protocol has been widely used in the automotive industry to fulfil the safety and real-time requirements of the application. As an extension of the standard CAN protocol, the TTCAN protocol aims to guarantee a safe and deterministic communication by introducing time-triggered messages with respect to a global synchronized time, which are scheduled in independent transmission windows within the system matrix. However, the new features bring more difficulties in designing and verifying the reliable applications in the TTCAN network. In this paper, we first present a formal probabilistic model of the TTCAN protocol with a consideration of its novel features. A TTCAN system consisting of three parts, i.e., a system matrix, an arbitration and some nodes, is modeled as discrete Markov chains model. Furthermore, five probabilistic properties are described and verified in the probabilistic model checker tool PRISM. Our work gives a quantitative analysis method for the given requirements, which facilitates the designers to a formal understanding of TTCAN protocol.

Funder

China HGJ Project

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on verification method of Gatekeeper model of Internet of Vehicles protocol for time constraints;2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3