A Spatial–Temporal Similar Graph Attention Network for Cyber Physical System Perception via Traffic Forecasting
-
Published:2021-12-15
Issue:
Volume:
Page:
-
ISSN:0218-1266
-
Container-title:Journal of Circuits, Systems and Computers
-
language:en
-
Short-container-title:J CIRCUIT SYST COMP
Author:
Zhao Kaidi1ORCID,
Xu Mingyue1,
Yang Zhengzhuang1,
Han Dingding1
Affiliation:
1. Fudan University, Shanghai, P. R. China
Abstract
Traffic flow forecasting is the basic challenge in intelligent transportation system (ITS). The key problem is to improve the accuracy of model and capture the dynamic temporal and nonlinear spatial dependence. Using real data is one of the ways to improve the spatial–temporal correlation modeling accuracy. However, real traffic flow data are not strictly periodic because of some random factors, which may lead to some deviations. This study focuses on capturing and modeling the temporal perturbation in real periodic data and we propose a spatial–temporal similar graph attention network (STSGAN) to address this problem. In STSGAN, the spatial–temporal graph convolution module is to capture local spatial–temporal relationship in traffic data, and the periodic similar attention module is to treat the nonlinear traffic flow information. Experiments on three datasets demonstrate that our model is best among all methods.
Funder
national key research and development program of china
national natural science foundation of china
Publisher
World Scientific Pub Co Pte Ltd
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献