Affiliation:
1. Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, P. R. China
Abstract
With the rapid development of Artificial Intelligence (AI), the problem of AI security has gradually emerged. Most existing machine learning algorithms may be attacked by adversarial examples. An adversarial example is a slightly modified input sample that can lead to a false result of machine learning algorithms. This poses a potential security threat for many AI applications. Especially in the domain of robot path planning, the adversarial maps may result in multiple harmful effects on the predicted path. However, there is no suitable approach to automatically identify them. To our knowledge, all previous works used manual observation method to identify the attack results of adversarial maps, which is time-consuming. Aiming at the existing problems, this paper explores a method to automatically identify the adversarial examples in Value Iteration Networks (VIN), which has a strong generalization ability. We analyze the possible scenarios caused by the adversarial maps. We propose a training-based identification approach to VIN adversarial examples by combining the path feature comparison and path image classification. Experiments show that our method can achieve a high-accuracy and effective identification on VIN adversarial examples.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献