A Dual-View Model for Stock Price Prediction of Internet-of-Thing Enterprises

Author:

Wang Ruozhou12,Shao Ziyang3,Hui Bei1,Wang Zhen3,Tian Ling1

Affiliation:

1. University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

2. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, P. R. China

3. Troyinformation Technology Co., LTD, Chengdu 610097, P. R. China

Abstract

In recent years, with the continuous development of the capital market and intelligent internet of things (IIoTs) technologies, investors have focused more on IIoTs enterprises’ stocks. Since the stocks of IIoTs enterprises have the characteristics of heavy capital flows and high stock price volatility, the effective prediction of IIoTs stock price changes plays an extremely important role in improving investment returns and controlling investment risks. According to the above characteristics, our model takes stock trend fluctuations and time series indicator changes into consideration and comprehensively captures IIoTs stock information from both the temporal domain and the spatial domain. Specifically, the proposed model is a dual-view model that incorporates selected trading indicators to predict the closing prices of stocks. In the first view, an RNN model is designed to enlarge the receptive field of the model. In the second view, we introduce an attention mechanism to extract the influences of individual stock trends on the forecasting target. To verify the validity of this prediction method, we compare it with six other stock prediction methods. The results show that on the Ping An (601318) and IFLYTEK (002230) datasets, our method achieves the best results, that is, the lowest RMSE values.

Funder

Sichuan Science and Technology Program

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3