Multi-Branch Dilation Convolution CenterNet for Object Detection of Underwater Vehicles

Author:

Liang Chen1,Zhou Mingliang2,Liu Fuqiang1,Qin Yi1ORCID

Affiliation:

1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, P. R. China

2. College of Computer Science, Chongqing University, Chongqing 400044, P. R. China

Abstract

Object detection occupies a very important position in the fishing operation and autonomous navigation of underwater vehicles. At present, most deep-learning object detection approaches, such as R-CNN, SPPNet, R-FCN, etc., have two stages and are based on anchors. However, the previous methods generally have the problems of weak generalization ability and not high enough computational efficiency due to the generation of anchors. As a well-known one-stage anchor-free method, CenterNet can accelerate the inference speed by omitting the step of generating anchors, whereas it is difficult to extract sufficient global information because of the residual structure at the bottom layer, which leads to low detection precision for the overlapping targets. Dilation convolution makes the kernel obtain a larger reception field and access more information. Multi-branch structure can not only preserve the whole area information, but also efficiently separate foreground and background. By combining the dilation convolution and multi-branch structure, multi-branch dilation convolution is proposed and applied to the Hourglass backbone network in CenterNet, then an improved CenterNet named multi-branch dilation convolution CenterNet (MDC-CenterNet) is built, which has a stronger ability of object detection. The proposed method is successfully utilized for detection of underwater organisms including holothurian, scallop, echinus and starfish, and the comparison result shows that it outperforms the original CenterNet and the classical object detection network. Moreover, with the MS-COCO and PASCAL VOC datasets, a number of comparative experiments are performed for showing the advancement of our method compared to other best methods.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3