EXTENDED COMPATIBILITY PATH BASED HARDWARE BINDING: AN ADAPTIVE ALGORITHM FOR HIGH LEVEL SYNTHESIS OF AREA-TIME EFFICIENT DESIGNS

Author:

SINHA SHARAD12,DHAWAN UDIT13,SRIKANTHAN THAMBIPILLAI1

Affiliation:

1. School of Computer Engineering, Nanyang Technological University, Singapore, 639798, Singapore

2. Implementation of Computation Group, University of Pennsylvania, PA 19104, USA

3. Department of ECE, Hong Kong University of Science and Technology, Hong Kong

Abstract

Hardware binding is an important step in high level synthesis (HLS). The quality of hardware binding affects the area-time efficiency of a design. The goal of a synthesis process is to produce a design which meets the area-time requirements. In this paper, we present a new hardware binding algorithm with focus on area reduction. It is called extended compatibility path-based (ECPB) hardware binding and extends the compatibility path-based (CPB) hardware binding method by exploiting inter-operation flow dependencies, non-overlapping lifetimes of variables and modifying the weight relation in order to make it application aware and thus adaptive in nature. The presented methodology also takes into account bit width of functional units (FUs) and multi mode FUs. It performs simultaneous FU and register binding. Implemented within a C to register transfer level (RTL) framework, it produces binding results which are better than those produced by weighted bipartite matching (WBM) and CPB algorithms. The use of ECPB algorithm results in an average reduction of 34% and 17.44% in area-time product over WBM and CPB methods, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3