MOLECULAR DYNAMICS SIMULATIONS OF PEPTIDE–SWCNT INTERACTIONS RELATED TO ENZYME CONJUGATES FOR BIOSENSORS AND BIOFUEL CELLS

Author:

KARUNWI OLUKAYODE12,BALDWIN CASSIDY3,GRIESHEIMER GISELA3,SARUPRIA SAPNA4,GUISEPPI-ELIE ANTHONY15

Affiliation:

1. Center for Bioelectronics, Biosensors and Biochips (C3B), Clemson University Advanced Materials Center, 100 Technology Drive, Anderson, South Carolina 29625, USA

2. Department of Bioengineering, Clemson University, Clemson, SC 29634, USA

3. SC Governor's School for Science & Mathematics, Hartsville, SC 29550, USA

4. Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA

5. Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA

Abstract

With the demonstration of direct electron transfer between the redox active prosthetic group, flavin adenine dinucleotide (FAD), of glucose oxidase (GOx) and single-walled carbon nanotubes (SWCNT), there has been growing interest in the fabrication of CNT-enzyme supramolecular constructs that control the placement of SWCNTs within the tunneling distance of co-factors for enhanced electron transfer efficiency in generation-3 biosensors and advanced biofuel cells. These conjugate systems raise a series of questions such as: which peptide sequences within the enzymes have high affinity for the SWCNTs? And, are these high affinity sequences likely to be in the vicinity of the redox-active co-factor to allow for direct electron transfer? Phage display has recently been used to identify specific peptide sequences that have high affinity for SWCNTs. Molecular dynamics simulations were performed to study the interactions of five discrete peptides with (16,0) SWCNT in explicit water as well as with graphene. From the progression of the radius of gyration, Rg, the peptides studied were concertedly adsorbed to both the SWCNT and graphene. Peptide properties calculated using individual amino acid values, such as hydrophobicity indices, did not correlate with the observed adsorption behavior as quantified by Rg, indicating that the adsorption behavior of the peptide was not based on the individual amino acid residues. However, the Rg values, reflective of the physicochemical embrace of the surface (SWCNT or graphene) had a strong positive correlation with the solubility parameter, indicating concerted, cooperative interaction of peptide segments with the materials. The end residues appear to dominate the progression of adsorption regardless of character. Sequences identified by phage display share some homology with key enzymes (GOx, lactate oxidase and laccase) used in biosensors and enzyme-based biofuel cells. These analogous sequences appear to be buried deep within the shell of fully folded proteins and as such are expected to be close to the redox-active prosthetic group.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3