COVID-19 Testing: Frequency Wins over Sensitivity in Control of Disease Transmission

Author:

Berthiaume Francois1ORCID

Affiliation:

1. Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA

Abstract

Emerging pathogens have no known therapies or vaccines and therefore can only be controlled via traditional methods of contact tracing, quarantine and isolation that require rapid and widespread testing. The most recent outbreak from an emerging pathogen is due to the highly transmissible SARS-CoV-2 virus causing COVID-19 disease, which is associated with no symptoms or mild symptoms in 80–90% of the infected individuals, while in the remainder of the patients it exhibits severe illness that can be lethal or persist for several weeks to months after infection. The first tests to diagnose infection by SARS-CoV-2 were developed soon after the genome of the virus became known, and use probes to measure viral RNA by reverse transcriptase-polymerase chain reaction (RT-PCR). These tests are highly sensitive and specific but can require several days to return results, which makes contact tracing and more generally efforts to control the spread of the infection very difficult. Furthermore, the sensitivity threshold is orders of magnitude below the viral load necessary for transmission; therefore, individuals recovering from the infection may still be have a positive test and be required to isolate unnecessarily while they are no longer infectious. Antigen tests were subsequently developed that use antibodies mostly targeted to the nucleocapsid protein of the virus. These tests are about 100 times less sensitive than RT-PCR, yes they detect viral loads that are about 1/10 that needed for transmission. Furthermore, such tests are potentially much cheaper than RT-PCR and yield results in 15 min or less. Antibody, also known as serological testing, is available and can provide useful information to understand the extent to which a population has been exposed to the virus; however, it is not a good indicator of current infection and not useful for infection control. Viral transmission models that incorporate testing and contact tracing show that infection control is much more readily achieved by increasing testing frequency than by using higher sensitivity testing. For example, compared to no testing at all, testing once every other week has a marginal benefit, while testing weekly can decrease the number of infections to 20–40%, and testing twice weekly or more can bring about a 95%[Formula: see text] reduction in infections. These lessons learned from dealing from the COVID-19 pandemic should guide future planning against potential emerging viruses.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3