CHARACTERIZATION AND TOXICITY OF CARBON DOT-POLY(LACTIC-CO-GLYCOLIC ACID) NANOCOMPOSITES FOR BIOMEDICAL IMAGING

Author:

DORCÉNA C. JENNY1,OLESIK KRISTI M.1,WETTA OLIVIA G.1,WINTER JESSICA O.1

Affiliation:

1. William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Ave, Columbus, OH 43210, USA

Abstract

Semiconductor quantum dots (QDs) have achieved initial success as biomedical imaging agents. However, significant cytotoxicity in the biological environment prohibits their use in vivo. Here, we introduce nanocomposites composed of carbon dots (C-dots) in poly(lactic-co-glycolic acid) (PLGA) carriers as possible imaging agents for in vivo applications. An initial hurdle to clinical use is overcome by synthesizing C-dots with commercially available carbon black precursors, permitting scalable nanomanufacturing. These fluorescent nanoparticles, which have a mean diameter of ~1 nm, display a disordered graphitic structure. To overcome a second clinical hurdle (i.e., rapid renal clearance of nanoparticles <~6 nm in diameter), C-dots were encapsulated in biodegradable PLGA nanospheres. The resulting nanocomposites showed a mean diameter of 344 ± 23 nm, which should reduce renal clearance. With further optimization, nanocarriers could be optimized to sizes <200 nm to reduce accumulation in the reticuloendothelial system (RES). Toxicity of both C-dots and C-dot-PLGA nanocomposites was evaluated using HepG2 liver cell lines. Unlike QDs, which can induce toxicological responses at concentrations as low as 0.005 mg/mL, C-dots exhibited cytotoxicity at concentrations greater than 0.2 mg/mL, while their derived nanocomposites did not exhibit cytotoxicity at any concentration tested (i.e., 0.02 mg/mL, 0.1 mg/mL and 0.2 mg/mL).

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3