TOPOGRAPHY MEDIATED REGULATION OF HER-2 EXPRESSION IN BREAST CANCER CELLS

Author:

DAVEREY AMITA1,MYTTY AUSTIN C.1,KIDAMBI SRIVATSAN12

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE-68588-0643, United States

2. Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE-68512, United States

Abstract

This article demonstrates that the surface micro-topography regulates the biology of breast cancer cells, including the expression of HER-2 gene and protein. The breast tumor microenvironment is made up of heterogenous mixture of pores, ridges and collagen fibers with well defined topographical features. Although, significant progress has been achieved towards elucidating the biochemical and molecular mechanisms that underlie breast cancer progression, quantitative characterization of the associated mechanical/topographical properties and their role in breast tumor progression remains largely unexplored. Therefore, the aim of this study is to investigate the effect of topography on the adhesion and biology of breast cancer cells in in vitro cultures. Polydimethylsiloxane (PDMS) surfaces containing different topographies were coated with polyelectrolyte multilayers (PEMs) to improve cell adhesion and maintain cell culture. HER-2 expressing breast cancer cells, BT-474 and SKBr3, were cultured on these PDMS surfaces. We demonstrate that micro-topography affects the cell adhesion and distribution depending on the topography on the PDMS surfaces. We also report for the first time that surface topography down-regulates the HER-2 gene transcription and protein expression in breast cancer cells when cultured on PDMS surfaces with micro-topographies compared to the tissue culture polystyrene surface (TCPS) control. Results from this study indicate that micro-topography modulates morphology of cells, their distribution and expression of HER-2 gene and protein in breast cancer cells. This study provides a novel platform for studying the role of native topography in the progression of breast cancer and has immense potential for understanding the breast cancer biology.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3