CHARACTERIZATION OF SIGNAL CONDUCTION ALONG DEMYELINATED AXONS BY ACTION-POTENTIAL-ENCODED SECOND HARMONIC GENERATION

Author:

LUO ZHI-HUI1,CHEN JIANG-XU1,HUANG YI-MEI1,YANG HONG-QIN1,LIN JU-QIANG1,LI HUI1,XIE SHU-SEN1

Affiliation:

1. Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China

Abstract

Action-potential-encoded optical second harmonic generation (SHG) has been recently proposed for use in detecting the axonal damage in patients with demyelinating diseases. In this study, the characterization of signal conduction along axons of two different levels of demyelination was studied via a modified Hodgkin–Huxley model, because some types of demyelinating disease, i.e., primary progressive and secondary progressive multiple sclerosis, are difficult to be distinguished by magnetic resonance imaging (MRI), we focused on the differences in signal conduction between two different demyelinated axons, such as the first-level demyelination and the second-level demyelination. The spatio-temporal distribution of action potentials along demyelinated axons and conduction properties including the refractory period and frequency encoding in these two patterns were investigated. The results showed that demyelination could induce the decrease both in the amplitude of action potentials and the ability of frequency coding. Furthermore, the signal conduction velocity in the second-level demyelination was about 21% slower than that in the first-level demyelination. The refractory period in the second-level demyelination was about 32% longer than the first-level. Thus, detecting the signal conduction in demyelinated axons by action-potential-encoded optical SHG could greatly improve the assessment of demyelinating disorders to classify the patients. This technique also offers a potential fast and noninvasive optical approach for monitoring membrane potential.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3