Label-free breast cancer detection and classification by convolutional neural network-based on exosomes surface-enhanced raman scattering

Author:

Ma Xiao1,Xiong Honglian2,Guo Jinhao1,Liu Zhiming1,Han Yaru1,Liu Mingdi2,Guo Yanxian1,Wang Mingyi2,Zhong Huiqing1ORCID,Guo Zhouyi1

Affiliation:

1. MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China

2. Department of Physics and Optoelectronic Engineering, Foshan University, Guangdong 528011, P. R. China

Abstract

Because the breast cancer is an important factor that threatens women’s lives and health, early diagnosis is helpful for disease screening and a good prognosis. Exosomes are nanovesicles, secreted from cells and other body fluids, which can reflect the genetic and phenotypic status of parental cells. Compared with other methods for early diagnosis of cancer (such as circulating tumor cells (CTCs) and circulating tumor DNA), exosomes have a richer number and stronger biological stability, and have great potential in early diagnosis. Thus, it has been proposed as promising biomarkers for diagnosis of early-stage cancer. However, distinguishing different exosomes remain is a major biomedical challenge. In this paper, we used predictive Convolutional Neural model to detect and analyze exosomes of normal and cancer cells with surface-enhanced Raman scattering (SERS). As a result, it can be seen from the SERS spectra that the exosomes of MCF-7, MDA-MB-231 and MCF-10A cells have similar peaks (939, 1145 and 1380 cm[Formula: see text]). Based on this dataset, the predictive model can achieve 95% accuracy. Compared with principal component analysis (PCA), the trained CNN can classify exosomes from different breast cancer cells with a superior performance. The results indicate that using the sensitivity of Raman detection and exosomes stable presence in the incubation period of cancer cells, SERS detection combined with CNN screening may be used for the early diagnosis of breast cancer in the future.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Guangzhou Science, Technology and Innovation Commission

the Innovation Project of Graduate School of South China Normal University

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3