Affiliation:
1. MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
2. Department of Physics and Optoelectronic Engineering, Foshan University, Guangdong 528011, P. R. China
Abstract
Because the breast cancer is an important factor that threatens women’s lives and health, early diagnosis is helpful for disease screening and a good prognosis. Exosomes are nanovesicles, secreted from cells and other body fluids, which can reflect the genetic and phenotypic status of parental cells. Compared with other methods for early diagnosis of cancer (such as circulating tumor cells (CTCs) and circulating tumor DNA), exosomes have a richer number and stronger biological stability, and have great potential in early diagnosis. Thus, it has been proposed as promising biomarkers for diagnosis of early-stage cancer. However, distinguishing different exosomes remain is a major biomedical challenge. In this paper, we used predictive Convolutional Neural model to detect and analyze exosomes of normal and cancer cells with surface-enhanced Raman scattering (SERS). As a result, it can be seen from the SERS spectra that the exosomes of MCF-7, MDA-MB-231 and MCF-10A cells have similar peaks (939, 1145 and 1380 cm[Formula: see text]). Based on this dataset, the predictive model can achieve 95% accuracy. Compared with principal component analysis (PCA), the trained CNN can classify exosomes from different breast cancer cells with a superior performance. The results indicate that using the sensitivity of Raman detection and exosomes stable presence in the incubation period of cancer cells, SERS detection combined with CNN screening may be used for the early diagnosis of breast cancer in the future.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
Guangzhou Science, Technology and Innovation Commission
the Innovation Project of Graduate School of South China Normal University
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education
Publisher
World Scientific Pub Co Pte Ltd
Subject
Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献