Affiliation:
1. Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
Abstract
Brillouin spectroscopy is a powerful tool for measuring the mechanical properties of materials without contact. The sensitivity to mechanical changes that a Brillouin spectrometer can detect is determined by the precision to which a spectral peak can be localized. The localization precision is however fundamentally limited by the low number of photons within a Brillouin measurement, as well as by intrinsic noise of the setup. Here, we present a method to improve the spectral sensitivity of Brillouin measurements by exploiting the autocorrelation function of the spectrum. We show that by performing a localization process on the autocorrelation function nearly 20% increase in localization precision can be obtained. This result is consistent between our theoretical treatment, numerical simulation and experimental results. We further study the effect of background noise on the precision improvement for realistic scenarios.
Funder
National Institutes of Health
National Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献