Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy

Author:

Guo Lu1,Xu Bo2,Chen Haobin3,Tang Ying1ORCID

Affiliation:

1. Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, P. R. China

2. Department of Urology, The First Hospital of Jilin University, Changchun 130021 P. R. China

3. Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, P. R. China

Abstract

Photodynamic therapy (PDT) is a new and rapidly developing treatment modality for clinical cancer therapy. Semiconductor polymer dots (Pdots) doped with photosensitizers have been successfully applied to PDT, and have made progress in the field of tumor therapy. However, the problems of severe photosensitivity and limited tissue penetration depth are needed to be solved during the implementation process of PDT. Here we developed the Pdots doped with photosensitizer molecule Chlorin e6 (Ce6) and photochromic molecule 1,2-bis(2,4-dimethyl-5-phenyl-3-thiophene)-3,3,4,5-hexafluoro-1-cyclopentene (BTE) to construct a photoswitchable nanoplatform for PDT. The Ce6-BTE-doped Pdots were in the green region, and the tissue penetration depth was increased compared with most Pdots in the blue region. The reversible conversion of BTE under different light irradiation was utilized to regulate the photodynamic effect and solve the problem of photosensitivity. The prepared Ce6-BTE-doped Pdots had small size, excellent optical property, efficient ROS generation and good photoswitchable ability. The cellular uptake, cytotoxicity, and photodynamic effect of the Pdots were detected in human colon tumor cells. The experiments in vitro indicated that Ce6-BTE-doped Pdots could exert excellent photodynamic effect in ON state and reduce photosensitivity in OFF state. These results demonstrated that this nanoplatform holds the potential to be used in clinical PDT.

Funder

science and technology research project of education department of Jilin province

Jilin province medical and health talents special project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser spectroscopy imaging technique coupled with nanomaterials for cancer diagnosis: A review;Journal of Innovative Optical Health Sciences;2023-05-19

2. Special issue on enhanced photodynamic therapy: Part II;Journal of Innovative Optical Health Sciences;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3