Affiliation:
1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
2. Becker & Hickl GmbH, Nunsdorfer Ring 7-9, Berlin 12277, Germany
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is increasingly used in biomedicine, material science, chemistry, and other related research fields, because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments, studying interaction between proteins, metabolic state, screening drugs and analyzing their efficacy, characterizing novel materials, and diagnosing early cancers. Understandably, there is a large interest in obtaining FLIM data within an acquisition time as short as possible. Consequently, there is currently a technology that advances towards faster and faster FLIM recording. However, the maximum speed of a recording technique is only part of the problem. The acquisition time of a FLIM image is a complex function of many factors. These include the photon rate that can be obtained from the sample, the amount of information a technique extracts from the decay functions, the efficiency at which it determines fluorescence decay parameters from the recorded photons, the demands for the accuracy of these parameters, the number of pixels, and the lateral and axial resolutions that are obtained in biological materials. Starting from a discussion of the parameters which determine the acquisition time, this review will describe existing and emerging FLIM techniques and data analysis algorithms, and analyze their performance and recording speed in biological and biomedical applications.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Guangdong Natural Science Foundation
Shenzhen Basic Research Project
Publisher
World Scientific Pub Co Pte Lt
Subject
Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献