Fluorescence life-time imaging microscopy (FLIM) monitors tumor cell death triggered by photothermal therapy with MoS2 nanosheets

Author:

Liang Hongda1,Peng Zheng1,Peng Xiao1ORCID,Yuan Yufeng1,Ma Teng1ORCID,Song Yiwan1ORCID,Song Jun1ORCID,Qu Junle1

Affiliation:

1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China

Abstract

Recently, photothermal therapy (PTT) has been proved to have great potential in tumor therapy. In the last several years, MoS2, as one novel member of nanomaterials, has been applied into PTT due to its excellent photothermal conversion efficacy. In this work, we applied fluorescence lifetime imaging microscopy (FLIM) techniques into monitoring the PPT-triggered cell death under MoS2 nanosheet treatment. Two types of MoS2 nanosheets (single layer nanosheets and few layer nanosheets) were obtained, both of which exhibited presentable photothermal conversion efficacy, leading to high cell death rates of 4T1 cells (mouse breast cancer cells) under PTT. Next, live cell images of 4T1 cells were obtained via directly labeling the mitochondria with Rodamine123, which were then continuously observed with FLIM technique. FLIM data showed that the fluorescence lifetimes of mitochondria targeting dye in cells treated with each type of MoS2 nanosheets significantly increased during PTT treatment. By contrast, the fluorescence lifetime of the same dye in control cells (without nanomaterials) remained constant after laser irradiation. These findings suggest that FLIM can be of great value in monitoring cell death process during PTT of cancer cells, which could provide dynamic data of the cellular microenvironment at single cell level in multiple biomedical applications.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

Guangdong Natural Science Foundation Innovation Team

Shenzhen Basic Research Project

Science Foundation of SZU

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3