Affiliation:
1. Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University Changsha 410083, P. R. China
2. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
Abstract
Near infrared (NIR) fluorescence imaging guided photodynamic therapy (PDT) is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring, specific spatiotemporal selectivity, and minimal invasiveness. For this, photosensitizers with NIR fluorescence emission and high 1O2 generation quantum yield are highly desirable. Herein, we designed and synthesized a “donor–acceptor” (D-A) structured semiconductor polymer (SP), which was then wrapped with an amphiphilic compound (Pluronic[Formula: see text] F127) to prepare water-soluble nanoparticles (F-SP NPs). The obtained F-SP NPs exhibit good water solubility, excellent particle size stability, strong absorbance at deep red region, and strong NIR fluorescent emission characteristics. The maximal mass extinction coefficient and fluorescence quantum yield of these F-SPs were calculated to be 21.7 L/(g[Formula: see text]cm) and 6.5%, respectively. Moreover, the 1O2 quantum yield of 89% for F-SP NPs has been achieved under 635 nm laser irradiation, which is higher than Methylene Blue, Ce6, and PpIX. The outstanding properties of these F-SP NPs originate from their unique D-A molecular characteristic. This work should help guide the design of novel semiconductor polymer for NIR fluorescent imaging guided PDT applications.
Funder
National Natural Science Foundation of China
South China University of Technology
Large-scale Instruments and Equipment of Central South University
Fundamental Research Funds for the Central South Universities
Key R&D plan of Hunan Province
Publisher
World Scientific Pub Co Pte Ltd
Subject
Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献