Sensing and Control Integration for Thrust Vectoring in Heavy UAVs: Real-World Implementation and Performance Analysis

Author:

Isaac Mohammad Sadeq Ale1ORCID,Peña Pablo Flores23ORCID,Luna Marco Andrés1ORCID,Ragab Ahmed Refaat243ORCID,Campoy Pascual1ORCID

Affiliation:

1. Computer Vision and Aerial Robotics Group, Centre for Automation and Robotics (CAR), Universidad Politécnica de Madrid (UPM-CSIC), 28006 Madrid, Spain

2. Department of Electrical Engineering, University Carlos III of Madrid, 28919 Leganés, Spain

3. Drone-Hopper Company, 28919 Leganés, Spain

4. Department of Network, Faculty of Information Systems and Computer Science, October 6 University, Giza 12511, Egypt

Abstract

Unmanned Aerial Vehicles (UAVs) have garnered significant attention among researchers due to their versatility in diverse missions and resilience in challenging conditions. However, electric UAVs often suffer from limited flight autonomy, necessitating the exploration of alternative power sources such as thermal engines. On the other hand, managing thermal engines introduces complexities and internal uncertainties into the system. In this paper, an Adaptive Robust attitude controller (ARAC) is proposed to address these challenges by drawing inspiration from helicopter solutions while minimizing mechanical intricacies. Specifically, the designed algorithm employs Thrust Vector Control (TVC) for an industrial heavy Multi-Ducted Fan (MDF), known for its superior static stability compared to conventional ducted fans. Subsequently, an integrated flap vanes system is positioned at the exhaust of the ducts for precise attitude control, effectively removing unwanted yaw moments associated with traditional propellers. This research builds on prior authors’ works to establish a proper mathematical and aerodynamic model. Also, using former simulation results to conduct real flight experiments aimed at enhancing TVC functionality. The findings highlight the effectiveness of this approach for heavy UAV applications. It is worth noting that the practical value of this research lies in its potential to significantly extend flight autonomy supplied by thermal engines and improve the resilience of UAVs in challenging real-world missions. This is particularly achievable provided that the design of flap vanes aligns closely with the dimensions of the duct system, offering a promising solution to a critical engineering challenge in the field of UAV technology.

Funder

ULTRADRON Project

Enabling Technologies for an Intelligent Logistics Unit with Drone Technology

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3