Defining Reference Area for Prediction of Aerodynamic Coefficients of a Biologically Inspired Hybrid Buoyant Vehicle

Author:

Haque Anwar-Ul1,Asrar Waqar1,Omar Ashraf A.2,Sulaeman Erwin1

Affiliation:

1. Department of Mechanical Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 50728, Malaysia

2. Department of Aeronautical Engineering, University Of Tripoli, P.O. Box 13154, Tripoli, Libya

Abstract

Geometric and volumetric quantities are usually used to define the reference area for the prediction of aerodynamic coefficients of various aquatic mammals, airships and unmanned vehicle. However, reference area does not have a unique definition, especially for a hybrid buoyant aerial vehicle having hybrid lifting hull which resembles a Steller sea lion. The term square cube root of volume is traditionally used as reference area to nondimensionalize the aerodynamic forces for conventional as well as unconventional airships. Published experimental data are usually available for complete configuration at low speed and in nondimensionalized form. So, a generic model of an aircraft’s fuselage was first tested in a wind tunnel as a test case to first determine the lift force and then the influence of different choices of reference area on the lift. A hybrid lifting hull was numerically simulated for the prediction of lift as well as drag coefficients and their ratio. It was found that the volumetric term has undefined correlation with aerodynamic forces in both cases. Changes in aerodynamic coefficients are not prominent when using the wetted area as the reference area. Based on the predicted trends of aerodynamic coefficients and a deep literature survey, the projected planform area is proposed as the best option for reference area of a Steller sea lion as well as for hybrid lifting hull of a hybrid buoyant vehicle.

Funder

Ministry of Science, Technology and Innovation

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ℒ1 Adaptive Path-Following of Airships in Wind;Unmanned Systems;2023-05-06

2. Research and advancements in hybrid airships—A review;Progress in Aerospace Sciences;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3