Affiliation:
1. Military Technical College, Kobry El-Kobbah, Cairo 11766, Egypt
Abstract
In this work, typical design, production, and testing procedures for a small unmanned helicopter are explained and performed. In doing so, preliminary sizing of the helicopter and three main disciplines are conducted: aerodynamic analytical and numerical simulations, power calculations, and structure analysis assessment. First, a thorough survey is implemented to obtain the trends for the maximum take-off weight versus some design constraints such as rotor diameter, motor power, payload, and empty weight. Performance calculation results are obtained to figure out all aspects that correspond to the specified mission. The designed rotor geometry along with the aerodynamic characteristics and flight performance variables is then validated using the blade element theory and numerical simulations. Second, based on the power curves obtained for different flight regimes, an electric brushless motor is selected. The numerical simulations (Computational Fluid Dynamics) analysis is used to enhance the selection which implies that the motor power should be greater than 5.4 kW to overcome the drag forces. The motor power selection corresponds to a maximum rotor pitch angle of 15∘ and a maximum rotor speed of 1450 RPM. Then, the aerodynamic loads are used as an input for the structural analysis using one-way coupling of fluid–structure interaction (FSI) and consequently designing the internal structure of the blade. Eventually, the internal structure manufactured using carbon fiber-reinforced polymer (CFRP) by applying a combined technique between wet layup and compression molding. The blade is statically tested compared with numerical finite element model results. The fuselage structure along with hub and tail units is manufactured and assembled with the existing on-shelf components to examine the helicopter lift capability with different payloads up to 9 kg. The results show that the detailed design process is significant for manufacturing such blades and the helicopter is capable of lifting off the ground with various payloads depending on the rotor pitch angles (8∘, 12∘, and 15∘) at a constant rotor speed of 1450 RPM.
Publisher
World Scientific Pub Co Pte Ltd