A Sampling-Based Approach to Solve Difficult Path Planning Queries Efficiently in Narrow Environments for Autonomous Ground Vehicles

Author:

Kiss Domokos1ORCID

Affiliation:

1. Department of Automation and Applied Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

Abstract

Path planning is an essential subproblem of autonomous robots’ navigation. Reaching a given goal pose or covering the available space are typical navigation missions, that require different planning approaches. We focus on such problems in this paper, where a goal pose must be reached by a wheeled autonomous ground vehicle in challenging situations, i.e. in complex environments with limited free space. Many path-planning methods are available, from which the sampling-based approaches gained the highest interest due to their computational efficiency. However, the performance of such methods degrades if the free space is limited and narrow passages have to be crossed on the way to the goal. Finding real-time planning methods to deliver high-quality paths in such situations is challenging. This paper aims to take steps toward solving this problem. On the one hand, an approach is presented to characterize free space narrowness and the difficulty of planning tasks. This can be used as a tool to compare planning queries and evaluate the performance of planning methods from the perspective of their sensitivity to environmental narrowness. On the other hand, an improved variant of our previously proposed RTR planner, an incremental sampling-based path-planning method, is introduced that exhibits good performance even in narrow and difficult planning situations. It is shown by simulations that it outperforms the popular RRT and RRT* planners in terms of running time and path quality, and that it is less sensitive to the narrowness of the environment where the planning task has to be solved.

Funder

Ministry of Culture and Innovation

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3