Quantum Network of Cooperative Unmanned Autonomous Systems

Author:

Khoshnoud Farbod12,Esat Ibrahim I.3,de Silva Clarence W.2,Quadrelli Marco B.4

Affiliation:

1. Electromechanical Engineering Technology Department, California State Polytechnic University, Pomona, California 91768, USA

2. Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada

3. Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, UK

4. Mobility and Robotic Systems, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109-8099, USA

Abstract

A quantum network may be realized by the entanglement of particles communicated by qubits between quantum computers, where the entangled photons of light are transferred for communication purposes. This technology has been proven to be feasible experimentally through free-space distribution of entangled photon pairs. Sending photons of light through nonlinear crystals produces correlated photon pairs, by splitting each photon into two half particles with each particle having the same level of energy, which results in entangled pairs. This entanglement is represented by photons, having both either horizontal or vertical polarization. This paper investigates collaborative robotic tasks of unmanned systems in a network where the agents are entangled. For instance, a leader robot sends two identical photons (e.g. with vertical polarization) to two follower robots/autonomous vehicles to communicate information about various tasks such as swarm, formation, trajectory tracking, path following and collaborative tasks. The potential advantages of quantum cooperation of robotic agents is the speed of the process, the ability to achieve security with immunity against cyberattacks, and fault tolerance, through entanglement. If a Quantum Network is implemented in a robotic application, it would present an effective solution; for example, for a group of unmanned systems working securely together. An analytical basis of such systems is investigated in this paper, and the formulation of quantum cooperation of unmanned systems is presented and discussed. The concept of experimental quantum entanglement, as well as quantum cryptography (QC), for robotics applications is presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3