A Nonlinear H-infinity Control Approach for Autonomous Truck and Trailer Systems

Author:

Rigatos Gerasimos1,Siano Pierluigi2,Wira Patrice3,Busawon Krishna4,Binns Richard4

Affiliation:

1. Unit of Industrial Automation, Industrial Systems Institute, 26504, Rion Patras, Greece

2. Department of Management and Innovation Systems, University of Salerno, 84084 Fisciano, Italy

3. IRIMAS, Université de Haute Alsace, 68093 Mulhouse, France

4. Nonlinear Control Group, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

Abstract

A nonlinear optimal control method is developed for autonomous truck and trailer systems. Actually, two cases are distinguished: (a) a truck and trailer system that is steered by the front wheels of its truck, (b) an autonomous fire-truck robot that is steered by both the front wheels of its truck and by the rear wheels of its trailer. The kinematic model of the autonomous vehicles undergoes linearization through Taylor series expansion. The linearization is computed at a temporary operating point that is defined at each time instant by the present value of the state vector and the last value of the control inputs vector. The linearization is based on the computation of Jacobian matrices. The modeling error due to approximate linearization is considered to be a perturbation that is compensated by the robustness of the control scheme. For the approximately linearized model of the autonomous vehicles an H-infinity feedback controller is designed. This requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. The stability of the control loop is confirmed through Lyapunov analysis. It is shown that the control loop exhibits the H-infinity tracking performance which implies elevated robustness against modeling errors and external disturbances. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven. Finally, to implement state estimation-based control for the autonomous vehicles, through the processing of a small number of sensor measurements, the H-infinity Kalman Filter is proposed.

Funder

Unit of Industrial Automation / Industrial Systems Institute

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3