Affiliation:
1. School of Electrical and Electronic Engineering, Nanyang Technological University Singapore 639798, Singapore
Abstract
Deep reinforcement learning-based mobile robot navigation has attracted some recent interest. In the single-agent case, a robot can learn to navigate autonomously without a map of the environment. In the multi-agent case, robots can learn to avoid collisions with each other. In this work, we propose a behavior-based mobile robot navigation method which directly maps the raw sensor data and goal information to the control command. The learned navigation policy can be applied in both single-agent and multi-agent scenarios. Two basic navigation behaviors are considered in our method, which are goal reaching and collision avoidance. The two behaviors are fused based on the risk-level estimation of the current state. The navigation task is decomposed using the behavior-based framework, which is capable of reducing the complexity of the learning process. The simulations and real-world experiments demonstrate that the proposed method can enable the collision-free autonomous navigation of multiple mobile robots in unknown environments.
Publisher
World Scientific Pub Co Pte Lt
Subject
Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献