Curriculum Reinforcement Learning for Autonomous Planning in Unprotected Left Turn Scenarios

Author:

Zhu Yuzhen12ORCID,Xu Shuyuan1ORCID,Chen Xuemei12ORCID,Zhao Yanan1ORCID,Dong Xianyuan2ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, 5th South ZhongGuanCun Street, Beijing, P. R. China

2. Advanced Technology Research Institute, Beijing Institute of Technology, 8366 Haitang Road, Jinan, Shandong, P. R. China

Abstract

In complex urban scenarios like intersections without dedicated left-turn signals, the construction of planning systems that maximize efficiency while guarantee safety has been a significant challenge. In this paper, we propose a reinforcement learning approach based on curriculum learning using real world dataset, and we develop a partial end-to-end planning and control model capable of adapting to variable temporal and spatial dimensional state inputs, applying it to autonomous driving task. Our model is compared with mainstream reinforcement learning algorithms to validate that our proposed algorithm can effectively solve complex spatio-temporal planning problems. This significantly enhances the efficiency of passing while maintaining a certain level of safety.

Funder

Shandong Key R&D Program

Jinan Space-air Information Industry Special Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3