Rotor Fault Detection and Identification in Multirotors Based on Supervised Learning

Author:

González-Etchemaite José I.1,Pose Claudio D.123,Giribet Juan I.23

Affiliation:

1. Laboratorio de Automática y Robótica, Facultad de Ingeniería, Universidad de Buenos Aires, Avenido Paseo Colón 850, Ciudad Autónoma de Buenos Aires, Argentina

2. Laboratorio de Inteligencia Artificial y Robótica, Universidad de San Andrés, Vito Dumas 284, Provincia de Buenos Aires, Argentina

3. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C. A. de Buenos Aires, Argentina

Abstract

This work presents the development of a fault detection and identification module for multirotor unmanned aerial vehicles (UAVs), capable of detecting a total failure in any of its rotors. The solution is based on a supervised learning approach, for which random forest and support vector machine classifiers have been trained using simulated data, and proved to be feasible to implement in real time. To validate these models, experimental proof will be shown of a classifier running in real time onboard a particular fault tolerant hexarotor design, showing the fastest detection times in this vehicle to date.

Funder

NVIDIA Applied Research Program Award 2021

Agencia Nacional de Investigaciones Cientificas y Tecnologicas

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3