Efficient Real-Time Path Planning with Self-Evolving Particle Swarm Optimization in Dynamic Scenarios

Author:

Xin Jinghao1ORCID,Li Zhi1ORCID,Zhang Yang1ORCID,Li Ning1ORCID

Affiliation:

1. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

Particle Swarm Optimization (PSO) has demonstrated efficacy in addressing static path planning problems. Nevertheless, such application on dynamic scenarios has been severely precluded by PSO’s low computational efficiency and premature convergence downsides. To address these limitations, we proposed a Tensor Operation Form (TOF) that converts particle-wise manipulations to tensor operations, thereby enhancing computational efficiency. Harnessing the computational advantage of TOF, a variant of PSO, designated as Self-Evolving Particle Swarm Optimization (SEPSO) was developed. The SEPSO is underpinned by a novel Hierarchical Self-Evolving Framework (HSEF) that enables autonomous optimization of its own hyper-parameters to evade premature convergence. Additionally, a Priori Initialization (PI) mechanism and an Auto Truncation (AT) mechanism that substantially elevates the real-time performance of SEPSO on dynamic path planning problems were introduced. Comprehensive experiments on four widely used benchmark optimization functions have been initially conducted to corroborate the validity of SEPSO. Following this, a dynamic simulation environment that encompasses moving start/target points and dynamic/static obstacles was employed to assess the effectiveness of SEPSO on the dynamic path planning problem. Simulation results exhibit that the proposed SEPSO is capable of generating superior paths with considerably better real-time performance (67 path planning computations per second in a regular desktop computer) in contrast to alternative methods. The code and video of this paper can be accessed here [Code and Video: https://github.com/XinJingHao/Real-time-Path-planning-with-SEPSO ].

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3