Automated Playbook for UAV Traffic Management Based on Spatiotemporal Scenario Data

Author:

He Chenyuan1,Wan Yan1,Xie Junfei2

Affiliation:

1. Department of Electrical Engineering, University of Texas at Arlington, Arlington 76019, TX, USA

2. Department of Electrical and Computer Engineering, San Diego State University, San Diego 92182, CA, USA

Abstract

This paper develops a decision framework to automate the playbook for UAS traffic management (UTM) under uncertain environmental conditions based on spatiotemporal scenario data. Motivated by the traditional air traffic management (ATM) which uses the playbook to guide traffic using pre-validated routes under convective weather, the proposed UTM playbook leverages a database to store optimal UAS routes tagged with spatiotemporal wind scenarios to automate the UAS trajectory management. Our perspective is that the UASs, and many other modern systems, operate in spatiotemporally evolving environments, and similar spatiotemporal scenarios are tied with similar management decisions. Motivated by this feature, our automated playbook solution integrates the offline operations, online operations and a database to enable real-time UAS trajectory management decisions. The solution features the use of similarity between spatiotemporal scenarios to retrieve offline decisions as the initial solution for online fine tuning, which significantly shortens the online decision time. A fast query algorithm that exploits the correlation of spatiotemporal scenarios is utilized in the decision framework to quickly retrieve the best offline decisions. The online fine tuning adapts to trajectory deviations and subject to collision avoidance among UASs. The solution is demonstrated using simulation studies, and can be utilized in other applications, where quick decisions are desired and spatiotemporal environments play a crucial role in the decision process.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3