Reinforcement Learning Applications in Unmanned Vehicle Control: A Comprehensive Overview

Author:

Liu Hao1,Kiumarsi Bahare2,Kartal Yusuf3ORCID,Taha Koru Ahmet3,Modares Hamidreza2,Lewis Frank L.3

Affiliation:

1. Institute of Artificial Intelligence, Beihang University, Beijing 100191, P. R. China

2. Michigan State University, East Lansing, MI 48823, USA

3. University of Texas at Arlington Research Institute, Fort Worth, TX 76118, USA

Abstract

This paper briefly reviews the dynamics and the control architectures of unmanned vehicles; reinforcement learning (RL) in optimal control theory; and RL-based applications in unmanned vehicles. Nonlinearities and uncertainties in the dynamics of unmanned vehicles (e.g. aerial, underwater, and tailsitter vehicles) pose critical challenges to their control systems. Solving Hamilton–Jacobi–Bellman (HJB) equations to find optimal controllers becomes difficult in the presence of nonlinearities, uncertainties, and actuator faults. Therefore, RL-based approaches are widely used in unmanned vehicle systems to solve the HJB equations. To this end, they learn the optimal solutions by using online data measured along the system trajectories. This approach is very practical in partially or completely model-free optimal control design and optimal fault-tolerant control design for unmanned vehicle systems.

Funder

Army Research Office

Office of Naval Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3