Affiliation:
1. Computer Learning Research Centre, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
Abstract
Classification of Internet traffic is very important to many applications such as network resource management, network security enforcement and intrusion detection. Many machine-learning algorithms have been successfully used to classify network traffic flows with good performance, but without information about the reliability in classifications. In this paper, we present a recently developed algorithmic framework, namely the Venn Probability Machine, for making reliable decisions under uncertainty. Experiments on publicly available real Internet traffic datasets show the algorithmic framework works well. Comparison is also made to the published results.
Publisher
World Scientific Pub Co Pte Lt
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献