Affiliation:
1. Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552, Japan
Abstract
In this paper, the seismic collapse probability of base-isolated reinforced concrete buildings considering pounding with a moat wall and financial loss estimation is studied. For this purpose, three-dimensional finite element models of a code-compliant 10-story base-isolated shear wall-frame (BI-SWF) building and a 10-story base-isolated moment resisting frame (BI-MRF) building are used. Results indicate that the BI-MRF building has a greater probability of collapse compared to that of the BI-SWF building, the probability of collapse in 50 years for the BI-MRF building is 1.3 times greater than that of the BI-SWF building for both no pounding and pounding cases. The probability of collapse increases when pounding is considered, which results in a smaller value of the collapse margin ratio compared to no pounding case for both the buildings. The financial losses resulting from damage to the BI-MRF and BI-SWF buildings under design earthquake (DE) and risk-targeted maximum considered earthquake (MCER) levels are calculated for the no pounding case, since there was no pounding under DE-level and very few instances of pounding under MCER-level. Calculation of financial losses due to damage to structural and nonstructural components, service equipment and downtime shows that the BI-SWF building results in larger repair costs and downtime cost compared to the BI-MRF building.
Publisher
World Scientific Pub Co Pte Lt
Subject
Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献