Characteristics of Leading Tsunami Waves Generated in Three Recent Tsunami Events

Author:

An Chao1,Liu Philip L.-F.12

Affiliation:

1. School of Civil and Environmental Engineering, Cornell University, Ithaca, 14850, USA

2. Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taoyuan, 320, Taiwan

Abstract

In this paper, the time series of ocean water surface elevation, recorded by Deep-ocean Assessment and Recording of Tsunamis (DART) sensors in the Pacific Ocean, during three recent tsunami events — 2010 Chile tsunami, 2011 Tohoku tsunami, and 2012 Haida Gwaii tsunami — are analyzed. The characteristics of leading tsunami waves are examined in terms of their propagation speed, wave period and wave amplitude so as to determine the importance of wave nonlinearity and frequency dispersion. Using the estimated arrival time of leading waves at each DART station and the distance from each station to the epicenter of the corresponding earthquake, the averaged propagation speed of leading waves for each event is calculated. It is found that the wave propagation speed for 2010 Chile tsunami is roughly 190 m/s, and is slightly slower than that of 2011 Tohoku and 2012 Haida Gwaii tsunamis, 210 m/s for both events. Two time scales associated with the leading waves are introduced: the duration of leading wave crest and the leading wave period obtained from a wavelet analysis. The results show that the leading wave crest duration is roughly 15–20 min and the wave period is roughly 25–30 min at most of DART stations for all the three events. The wave nonlinearity and frequency dispersion parameters, being defined as the wave amplitude to water depth ratio and the square of water depth to wavelength ratio, respectively, are calculated for the leading waves. The parameter for wave nonlinearity is found to be smaller than 4.0 × 10-4, while the parameter for frequency dispersion is smaller than 0.02 at all stations for all the three events. Finally, the cumulative effects of nonlinearity and frequency dispersion for the leading waves are investigated. It is found that the distances between the epicenter and all DART stations in each event are much smaller than those required for the nonlinearity and/or frequency dispersive effects to become significant.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3