Numerical Study of Flow Structures Through Horizontal Double-Layered Vegetation Consisting of Combined Submergent and Emergent Vegetations

Author:

Abbas Fakhar Muhammad1,Tanaka Norio2

Affiliation:

1. Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan

2. International Institute for Resilient Society, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan

Abstract

This study addresses the vivid internal flow structure variations through horizontal double-layered vegetation (HDLV) under subcritical flow conditions for an inland tsunami. The computational domain was built in ANSYS Workbench, while post-processing and simulation were performed using the computational fluid dynamics (CFD) tool FLUENT with the three-dimensional (3D) Reynolds stress model (RSM). Two alternative arrangements of HDLV were considered, namely Configuration 1 (short submergent layer [Formula: see text] emergent layer (Lt)) and Configuration 2 (tall emergent layer [Formula: see text] submergent layer (Ls)) along with varying flow depths. Strong inflections in velocity and Reynolds stress profiles were observed at the interface near the top of Ls, Whereas, these profiles were almost constant from bed to the top of vegetations inside Lt. A shear layer zone was formed above the top of Ls, which extended to the downstream region in Configuration 2 while it was restricted by Lt in Configuration 1. The normal Reynolds stresses at the bed were significantly greater within Ls in Configuration 2 than inside Lt in Configuration 1. Hence, Configuration 1 was performed relatively better than Configuration 2 in terms of reducing velocity within the vegetation, while Configuration 2 played a key role in attenuating the increased velocities and confining the shear layer above the short submergent layer.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3